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Abstract 
 
Characterization of urban radiance and reflectance is important for understanding the effects of solar 
energy flux on the urban environment as well as for satellite mapping of urban settlement patterns.  
Spectral mixture analyses of Landsat and Ikonos imagery suggest that the urban radiance field can very 
often be described with combinations of three or four spectral endmembers.  Dimensionality estimates of 
AVIRIS radiance measurements of urban areas reveal the existence of 30 to 60 spectral dimensions.  The 
extent to which broadband imagery collected by operational satellites can represent the higher 
dimensional mixing space is a function of both the spatial and spectral resolution of the sensor.  AVIRIS 
imagery offers the spatial and spectral resolution necessary to investigate the scale dependence of the 
spectral dimensionality.  Dimensionality estimates derived from Minimum Noise Fraction (MNF) 
eigenvalue distributions show a distinct scale dependence for AVIRIS radiance measurements of 
Milpitas, California.  Apparent dimensionality diminishes from almost 40 to less than 10 spectral 
dimensions between scales of 8000 m and 300 m.  The 10 to 30 m scale of most features in urban 
mosaics results in substantial spectral mixing at the ~20 m scale of high altitude AVIRIS pixels.  Much 
of the variance at pixel scales is therefore likely to result from actual differences in surface reflectance at 
pixel scales.  Spatial smoothing and spectral subsampling of AVIRIS spectra both result in substantial 
loss of information and reduction of apparent dimensionality, but the primary spectral endmembers in all 
cases are analogous to those found in global analyses of Landsat and Ikonos imagery of other urban 
areas. 
 
Introduction 
 

Recent estimates indicate that over 45% of the world’s human population now lives in urban areas 
with over 60% projected by 2030 (United Nations, 1999).  As the size and number of urban 
agglomerations increases, so does the relative importance of the urban environment to the global 
population.  Remote sensing can serve (at least) two important roles in the study of the urban 
environment.  Moderate resolution, broadband optical sensors on the Landsat and Spot satellites provide 
a 30 year time series with which to quantify urban growth and settlement patterns worldwide.  In order to 
map urban growth with optical sensors, it is necessary to distinguish the reflectance properties of the 
urban surfaces from those of other landcover types.  This is an inherently difficult task because urban 
areas incorporate spectrally identical land covers from other environments and because built urban 
surfaces are often composed of materials extracted from nearby surroundings.  The scale and texture of 
urban reflectance is, however, often distinct from other landcovers so the combination of reflectance and 
textural properties is more informative.  This requires a robust characterization of urban reflectance 
properties at different scales.  The synoptic view of the urban mosaic provided by satellite and airborne 
sensors is also an important complement to in situ measurements of physical characteristics of the urban 
environment.  The spectral reflectance properties of the urban mosaic have a strong influence on energy 
flux through the urban environment and the microclimatic variations that result (Landsberg, 1981).  
Since much of the reflectance of the built environment is subject to human modification, understanding 



 

 

scale dependent optical properties of existing urban settlements may influence future design decisions.  
Characterization of urban spectral reflectance serves both of these objectives. 

 
Analysis of reflectance properties in different urban environments may provide a basis for a general 

characterization of urban reflectance.  Comparative analyses of Landsat and Ikonos imagery for a variety 
of cities worldwide indicates that spectral heterogeneity at scales of tens of meters is the most consistent 
characteristic of broadband spectral reflectance of urban areas (Small, 2001b).  In spite of the lack of a 
single characteristic urban reflectance spectrum, almost all of the urban areas considered could be 
described as spectral mixtures of three or four endmembers as resolved by the Ikonos, Landsat TM and 
ETM+ sensors (Small, 2001a).  In contrast, many of the areas surrounding these cities are characterized 
by more complex mixing spaces with larger numbers of spectral endmembers.  Representation of urban 
reflectance with a simple spectral mixing model (e.g. Adams et al, 1986, 1993; Smith et al, 1990; 
Gillespie et al, 1990) would be desirable because it could accommodate the spectral heterogeneity with a 
physically based description consistent with the variety of reflectances observed in urban environments.  
This requires a more thorough understanding of the relationship between the true spectral dimensionality 
of the urban mosaic and the low dimensional projection of this mixing space that is resolved by 
broadband sensors like Landsat.  The representation of the mixing space provided by broadband imagery 
is incomplete because these operational sensors lack the spectral resolution necessary to distinguish 
among materials with narrow absorption bands resolvable by imaging spectrometers like AVIRIS.  

 
An analysis of high resolution AVIRIS imagery by Green and Boardman, (2000) found that a flight 

line collected of San Diego California had higher spectral dimensionality than datasets collected in other 
environments.  This prompts the question of whether urban areas can really be characterized with simple 
linear mixing models or whether the true high spectral dimensionality of the urban mosaic will preclude 
development of a general characterization of urban reflectance.  In order to resolve this question, it is 
necessary to consider the spatial scale of the observations.   The objective of this analysis is to investigate 
the relationship between spatial scale and spectral dimensionality in an urban environment.  The focus of 
the analysis in on the use of eigenvalue decomposition for multiscale estimation of spectral 
dimensionality.  

 
Data and Analysis 
 

This analysis used AVIRIS radiance and reflectance data collected over Milpitas California on 20 
June 1997.  These data are available as AVIRIS standard data products from popo.jpl.nasa.gov.  The 
study area, shown in Figure 1, consists of undeveloped land, suburban residential areas and urban 
industrial areas.  The primary spectral endmembers, derived from the analyses described below, are 
shown in Figure 2.  These endmembers were selected using the methodology described by Boardman 
(1993) and Boardman and Kruse (1994).  Endmember spectra are shown in scaled reflectance for ease of 
interpretation, but all dimensionality estimates were made using calibrated radiance data so the 
information content is determined by both the surface reflectance characteristics and the atmospheric 
interactions.  

 
Spectral dimensionality estimates are based on eigenvalue distributions obtained from principal 

component analyses as described by Boardman and Green (2000) and Green and Boardman (2000).  The 
Minimum Noise Fraction (MNF) transformation (Green et al, 1988; RSI, 2000) is used because it 
accommodates band-to-band differences in signal and noise amplitude and because the resulting 
eigenvalues provide an indication of the information and noise content of the data.  All analyses shown 
here were done with ENVI image processing software.  The MNF implemented in ENVI is similar to that 
Maximum Noise Fraction transformation described by Green et al (1988) but differs in the scaling of the 
resulting eigenvalues.  The eigenvalues produced by ENVI’s MNF are scaled in sigma noise units 
analogous to a signal-to-noise ratio so the number of eigenvalues greater than unity gives an estimate of 



 

 

the number of dimensions with variance larger than the amplitude of the noise estimate. One advantage 
of the Minimum Noise Fraction transformation is that it accounts for the fact that the noise in some bands 
may be larger than the signal in other bands.  Rather than basing the rotation on variance alone, the ENVI 
MNF attempts to “prewhiten” the data by performing an initial rotation to diagonalize the noise 
covariance and by rescaling the eigenvalues of the second rotation to sigma noise units (RSI, 2000).   

 
In order to compare dimensionality estimates from different areas, it is necessary to use a consistent 

noise estimate.  For this analysis, the noise estimate is based on a subimage acquired over the Calaveras 
reservoir in the same AVIRIS scene as the study area.  By using the same noise covariance for all MNF 
rotations, differences in the resulting eigenvalue distributions should more accurately reflect differences 
in the signal content of each subscene.  The noise covariance estimate is derived from differences in 
spectra of adjacent pixels so a dark, uniform target provides a crude approximation of a dark current 
noise source.  The approximation is imperfect, however, because it includes actual differences in 
radiance related to spatial variations in surface reflectance and path radiance at scales of ~20 meters. 

 

 
Color image available from: www.LDEO.columbia.edu/~small/Urban.html 

 



 

 

 
Color image available from: www.LDEO.columbia.edu/~small/Urban.html 
 
The relationship between spatial scale and spectral dimensionality was quantified by comparison of 40 

subscenes within the study area.  Nine adjacent 100x100 pixel subscenes covering the built up area were 
used for the first stage of the analysis.  Each of these ~2x2 km areas contained a variety of landcover 
types.  Within these nine subscenes, ten 30x30 pixel subscenes were chosen in areas of undeveloped 
hillslopes, suburban residential and urban industrial development.  An additional twenty 15x15 pixel 
subscenes allowed each of these landcover types to be further isolated in smaller areas. 

 
Spatial averaging attenuates both noise and information to varying degrees while spectral resampling 

should preferentially attenuate the information content of the signal.  The effects of spatial averaging and 
spectral resampling were tested in a 200x170 pixel subscene containing a combination of industrial and 
residential landcovers.  Spatial averaging was done with a series of gaussian kernels ranging from 5x5 to 
45x45 pixels.  Spectral resampling was done using every Nth band of the original AVIRIS radiance 
dataset for N ranging from 2 to 16. 
 



 

 

Results 
 

Spectral endmembers bounding the mixing space of the lower order MNF dimensions are analogous to 
the endmembers found in analyses of other urban areas.  Figure 2 shows 12 endmembers bounding the 
six primary dimensions of the mixing space.  The endmember spectra bounding the lowest three 
dimensions correspond to vegetation, soil, high albedo roofing material and low albedo pavement.  The 
endmembers spanning the low order dimensions are almost identical to those derived from a standard 
principal component analysis, indicating that a simple four component mixing model accounts for the 
vast majority of variance (97.5%) in the radiance field.   The endmembers associated with the higher 
order dimensions are certainly significant but would not be resolved by broadband sensors. 

 
The analysis of the 40 subscenes indicates a correspondence between area and dimensionality.   When 

plotted in log-linear space, the eigenvalue distributions in Figure 3 all have a similar shape with a sharp 
break in slope separating the primary dimensions associated with higher, but rapidly diminishing, spatial 
autocorrelation from a long tail of gradually diminishing signal to noise levels.  The break in slope 
corresponds to a transition from spatially coherent to spatially incoherent eigenimages.  Figure 4 shows 
an example of this transition for a spectrally diverse subscene containing a variety of landcovers at 
different spatial scales.  The transition from spatially coherent to spatially incoherent eigenimages occurs 
between dimension 31 and 35 but there are still isolated coherent features visible in these higher 
dimension eigenimages.  These isolated features have distinct spectra and therefore represent useful 
information about the smaller features in the image. 

 
The number of MNF eigenvalues larger than unity is often used as an indication of the inherent 

dimensionality of a hyperspectral image (e.g. Boardman and Green, 2000, Green and Boardman, 2000, 
RSI, 2000).  Numerically, the eigenvalues larger than unity are associated with dimensions having 
variance greater than that of the noise estimate.  In Figure 3, the eigenvalue distributions cluster in 
accordance with the size of the subimage.  If the unity threshold is adopted, the results imply that the full 
image contains almost 200 spectral dimensions and that the 100x100 pixel subimages are also of 
comparable dimensionality.  The apparent dimensionality drops somewhat for the 30x30 pixel subimages 
and more appreciably for the 15x15 pixel subimages.  As pointed out by Boardman and Green (2000), 
eigenvalue distributions are, however, merely a statistical proxy for dimensionality.  In this study, the 
higher dimensions associated with the tail of the eigenvalue distribution do generally contain some small, 
spatially coherent features in the associated eigenimages that may correspond to distinct spectral features. 

 
A more conservative criterion of spectral dimensionality would be the break in slope distinguishing 

the low order eigenvalues with coherent eigenimages associated with greater spatial coherence.  This 
criterion also indicates a similar scale dependence in dimensionality.  The full image and the 100x100 
pixel subimages have transitions between 25 and 30 while the 30x30 pixel subimages have a transitions 
between 20 and 25.  The 15x15 pixel subimages are small enough to contain more spectrally 
homogeneous areas and show a wide range of transitions between 10 and 25 dimensions.  Using this 
“breakpoint” criterion, the hillslope subimages have the lowest dimensionality, and the suburban 
residential subimages have the highest dimensionality.  

 
Spatial filtering of a high dimensional subscene results in both suppression of noise and dilution of 
spectral dimensionality.  Figure 5 shows the eigenvalue distribution (labelled Raw) corresponding to the 
eigenimages shown in Figure 4.  The raw image was smoothed with a succession of gaussian lowpass 
filters to investigate the effect of variance attenuation on the apparent dimensionality.  The same 
unfiltered noise source was used for each MNF rotation.  The effects of increased smoothing are 1) a 
successive reduction of variance (relative to the noise source) and 2) a shift in the breakpoint between the 
rapidly diminishing low-order eigenvalues and the gradually diminishing tail of higher order eigenvalues.  
The successive reduction in the number of eigenvalues greater than unity is a direct consequence of the  



 

 

 
 
Color image available from: www.LDEO.columbia.edu/~small/Urban.htm 

 
reduction of variance (relative to the noise source) resulting from the smoothing operator.  For the 5x5 
and 11x11 gaussian filters, the rightward shift of the breakpoint in the eigenvalue distributions is 
accompanied by a corresponding increase in the number of spatially coherent eigenimages.  For the 
23x23 and 45x45 filters the breakpoint shifts back to lower dimensions and becomes less pronounced.  
Spatial smoothing attenuates variance at higher wavenumbers shifting the transition between the larger, 
more spatially coherent spectral features with higher variance and the succession of less spatially 
coherent features with lower variance.  To the extent that some of this attenuated variance is noise, this is 
analogous to an increase in signal-to-noise ratio.  Some of the attenuated variance would, however, be 
expected to correspond with actual spectral variability at the ~20m pixel scale.  The larger filters may 
also be attenuating actual spectral endmembers and thereby reducing the dimensionality of the dataset 
and causing the breakpoint in the eigenvalue distribution to shift back to lower dimensions. 



 

 

 
 
Higher resolution image available from: www.LDEO.columbia.edu/~small/Urban.htm 



 

 

 
 

Color image available from: www.LDEO.columbia.edu/~small/Urban.htm 
 

Spectral resampling results in appreciable loss of spectral dimensionality.  The maximum 
dimensionality of the image is constrained by the number of spectral bands it contains.  As would be 
expected, reducing the number of bands results in a direct loss of dimensionality without changing the 
signal-to-noise ratio in the remaining bands.  Figure 6 indicates that subsampling by a factor of two 
significantly reduces the number of dimensions with variance greater than the noise estimate but does not 
change the breakpoint between the spatially coherent and spatially incoherent eigenimages.  Subsampling 
the specra by a factor of four further reduces the spatially incoherent dimensions but also causes the 
breakpoint in the eigenvalue distribution to shift to a lower dimension.  Resampling the spectra by factors 
of 8 and 16 has a pronounced effect on the dimensionality of the image - effectively eliminating some of 
the spectral dimensions and all but one or two spatially incoherent eigenimages.  This reduces the 
number of spectral endmembers that can be represented uniquely.  The loss of dimensionality occurs 
because many of the higher order spectral endmembers are characterized by subtle features that cannot be 
distinguished from one another without the fine spectral resolution provided by AVIRIS narrow spectral 
bandwidths.  



 

 

 
 
Color image available from: www.LDEO.columbia.edu/~small/Urban.html 
 

Implications 
 

The eigenvalue distributions have a consistent form for all of the subimages.  They are all 
characterized by rapidly diminishing amplitude in the low order dimensions and a longer tail of gradually 
diminishing amplitude in the higher dimensions.  When plotted in log-linear space, a distinct break in 
slope separates the two parts of the eigenvalue distribution.  This transition between distinct log-linear 
eigenvalue distributions is analogous to that commonly observed in physical processes characterized by 
scaling relationships in the presence of noise processes.  In this case, the low order eigenvalues are 
associated with spatially coherent eigenimages and the high order eigenvalues are associated with 
spatially incoherent eigenimages.  Within the Milpitas study area, the spatially coherent eigenimages 
span approximately 30 spectral dimensions.  The spectral endmembers associated with the extrema of the 
low order dimensions represent soil, vegetation, and a variety of high and low albedo anthropogenic 
endmembers.  Despite the high spectral dimensionality of the urban mosaic, the low order dimensions 
with the highest spatial autocorrelations are associated with the hyperspectral equivalents of the spectral 



 

 

endmembers that characterize broadband imagery of Milpitas and many other urban environments 
observed with Landsat and Ikonos imagery.   

 
Variance at pixel scale represents a combination of noise and signal.  The characteristic scale of urban 

reflectance is generally between 10 and 30 meters (Small, 2001b) so many of the 20-m AVIRIS pixels in 
the study area are likely to be spectral mixtures of at least two endmembers.  This results in appreciable 
spectral variability at pixel scales and contributes to the higher order principal components whose 
eigenimages are not spatially coherent.  Successive smoothing of the image suggests that apparent 
dimensionality increases somewhat as noise related variance is attenuated.  More severe smoothing 
reduces apparent dimensionality as isolated spectral endmembers are attenuated.  The first rotation 
applied by the MNF is based on the assumption that signal is strongly correlated among adjacent pixels 
and that noise is spatially uncorrelated at pixel scales.  In urban environments where significant 
variations in reflectance occur at pixel scales, much of the pixel scale variance is not noise.  Pre-rotation 
to diagonalize the noise covariance matrix therefore accommodates the spatially uncorrelated variance 
associated with the noise estimate but does not account for actual spectral variability at pixel scales.  By 
ordering the resulting eigenimages by decreasing spatial autocorrelation, the MNF rotation emphasizes 
the spectral endmembers occurring at larger spatial scales and relegates the isolated and mixed spectra to 
the higher order dimensions.  The scaling of eigenvalues in sigma noise units is convenient because it 
provides a benchmark for the amplitude of the instrument noise relative to pixel scale variance in the 
radiance field. 

 
The apparent reduction in dimensionality with spatial scale is a consequence of the characteristic 

scales of the urban mosaic.  The larger subimages generally contain a greater diversity of spectral 
endmembers and thus have higher dimensionality.  The smaller subimages have higher dimensionality in 
residential suburbs and transitional areas and lower dimensionality in more spectrally homogeneous 
areas.   In spite of the high spectral dimensionality of the urban mosaic, the majority of variance (97.5%) 
can be described with a four-endmember mixing model spanning the three low order dimensions of the 
mixing space.  The consistency of endmembers suggests that the low dimensional projections of the 
mixing space resolved by broadband sensors does represent the true dominant endmembers even if they 
cannot represent the true spectral diversity of the urban mosaic.  The scale analysis indicates that 
relatively high dimensionality is retained at least down to scales of 300 meters for high altitude AVIRIS 
in this area.  Higher spatial resolution AVIRIS imagery may reveal higher spectral dimensionality at the 
same scales however.  This method could also be used to quantify the spectral scaling properties of other 
environments.  For instance, spatial scaling of reflectance spectral in forest canopies may provide 
insights into species diversity and forest succession dynamics. 
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